Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotoxicology ; 18(1): 69-86, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38420937

RESUMEN

In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 µg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m3) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Ratones , Animales , Pulmón/patología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Ratones Endogámicos , Transformación Celular Neoplásica , Carcinogénesis/inducido químicamente , Carcinogénesis/patología , Exposición por Inhalación , Ratones Endogámicos C57BL
2.
Part Fibre Toxicol ; 17(1): 62, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287860

RESUMEN

BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 µg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION: Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Nanofibras/toxicidad , Nanotubos de Carbono/toxicidad , Contaminantes Atmosféricos/química , Daño del ADN , Células Epiteliales , Humanos , Exposición por Inhalación , Nanofibras/química , Nanotubos de Carbono/química , Tamaño de la Partícula , Propiedades de Superficie , Estados Unidos
3.
Part Fibre Toxicol ; 16(1): 36, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31590690

RESUMEN

BACKGROUND: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). RESULTS: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 µg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 µg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 µg/mL MWCNT-HT & ND. CONCLUSIONS: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.


Asunto(s)
Daño del ADN , Células Epiteliales/efectos de los fármacos , Calor , Pulmón/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Nitrógeno/química , Ciclo Celular , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Epiteliales/patología , Humanos , Pulmón/patología , Nanotubos de Carbono/química , Tamaño de la Partícula , Propiedades de Superficie
4.
Nanotoxicology ; 12(9): 975-991, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30317900

RESUMEN

The fiber-like shape of multi-walled carbon nanotubes (MWCNTs) is reminiscent of asbestos, suggesting they pose similar health hazards when inhaled, including pulmonary fibrosis and mesothelioma. Mice deficient in the tumor suppressor p53 are susceptible to carcinogenesis. However, the chronic pathologic effect of MWCNTs delivered to the lungs of p53 heterozygous (p53+/-) mice has not been investigated. We hypothesized that p53+/- mice would be susceptible to lung tumor development after exposure to either tangled (t-) or rod-like (r-) MWCNTs. Wild-type (p53+/+) or p53+/- mice were exposed to MWCNTs (1 mg/kg) via oropharyngeal aspiration weekly over four consecutive weeks and evaluated for cellular and pathologic outcomes 11-months post-initial exposure. No lung or pleural tumors were observed in p53+/+ or p53+/- mice exposed to either t- or rMWCNTs. In comparison to tMWCNTs, the rMWCNTs induced the formation of larger granulomas, a greater number of lymphoid aggregates and greater epithelial cell hyperplasia in terminal bronchioles in both p53+/- and p53+/+ mice. A constitutively larger area of CD45R+/CD3+ lymphoid tissue was observed in p53+/- mice compared to p53+/+ mice. Importantly, p53+/- mice had larger granulomas induced by rMWCNTs as compared to p53+/+ mice. These findings indicate that a combination of p53 deficiency and physicochemical characteristics including nanotube geometry are factors in susceptibility to MWCNT-induced lymphoid infiltration and granuloma formation.


Asunto(s)
Granuloma del Sistema Respiratorio/inducido químicamente , Pulmón/efectos de los fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Estructuras Linfoides Terciarias/inducido químicamente , Proteína p53 Supresora de Tumor/fisiología , Animales , Relación Dosis-Respuesta a Droga , Granuloma del Sistema Respiratorio/genética , Granuloma del Sistema Respiratorio/inmunología , Exposición por Inhalación , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Propiedades de Superficie , Estructuras Linfoides Terciarias/genética , Estructuras Linfoides Terciarias/inmunología , Proteína p53 Supresora de Tumor/genética
5.
Anal Chim Acta ; 1027: 149-157, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29866264

RESUMEN

Surface oxidation improves the dispersion of carbon nanotubes in aqueous solutions and plays a key role in the development of biosensors, electrochemical detectors and polymer composites. Accurate characterization of the carbon nanotube surface is important because the development of these nano-based applications depends on the degree of functionalization, in particular the amount of carboxylation. Affinity capillary electrophoresis is used to characterize the oxidation of multi-walled carbon nanotubes. A polytryptophan peptide that contains a single arginine residue (WRWWWW) serves as a receptor in affinity capillary electrophoresis to assess the degree of carboxylation. The formation of peptide-nanotube receptor-ligand complex was detected with a UV absorbance detector. Apparent dissociation constants (KD) are obtained by observing the migration shift of the WRWWWW peptide through background electrolyte at increasing concentrations of multi-walled carbon nanotubes. A 20% relative standard deviation in method reproducibility and repeatability is determined with triplicate analysis within a single sample preparation and across multiple sample preparations for a commercially available carbon nanotube. Affinity capillary electrophoresis is applied to assess differences in degree of carboxylation across two manufacturers and to analyze acid treated carbon nanotubes. The results of these studies are compared to X-ray photoelectron spectroscopy and zeta potential. Affinity capillary electrophoresis comparisons of carbon nanotube samples prepared by varying acid treatment time from 30 min to 3 h yielded significant differences in degree of carboxylation. X-ray photoelectron spectroscopy analysis was inconclusive due to potential acid contamination, while zeta potential showed no change based on surface charge. This work is significant to research involving carbon nanotube-based applications because it provides a new metric to rapidly characterize carbon nanotubes obtained from different vendors, or synthesized in laboratories using different procedures.

6.
ACS Nano ; 11(9): 8849-8863, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28759202

RESUMEN

Pulmonary toxicity studies on carbon nanotubes focus primarily on as-produced materials and rarely are guided by a life cycle perspective or integration with exposure assessment. Understanding toxicity beyond the as-produced, or pure native material, is critical, due to modifications needed to overcome barriers to commercialization of applications. In the first series of studies, the toxicity of as-produced carbon nanotubes and their polymer-coated counterparts was evaluated in reference to exposure assessment, material characterization, and stability of the polymer coating in biological fluids. The second series of studies examined the toxicity of aerosols generated from sanding polymer-coated carbon-nanotube-embedded or neat composites. Postproduction modification by polymer coating did not enhance pulmonary injury, inflammation, and pathology or in vitro genotoxicity of as-produced carbon nanotubes, and for a particular coating, toxicity was significantly attenuated. The aerosols generated from sanding composites embedded with polymer-coated carbon nanotubes contained no evidence of free nanotubes. The percent weight incorporation of polymer-coated carbon nanotubes, 0.15% or 3% by mass, and composite matrix utilized altered the particle size distribution and, in certain circumstances, influenced acute in vivo toxicity. Our study provides perspective that, while the number of workers and consumers increases along the life cycle, toxicity and/or potential for exposure to the as-produced material may greatly diminish.


Asunto(s)
Nanotubos de Carbono/toxicidad , Exposición Profesional/efectos adversos , Aerosoles/química , Aerosoles/toxicidad , Animales , Humanos , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Mutágenos/química , Mutágenos/toxicidad , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Polímeros/química , Polímeros/toxicidad
7.
Crit Rev Toxicol ; 47(1): 1-58, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27537422

RESUMEN

In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials. The findings of this review, in general, affirm those of the original evaluation on the inadequate or limited evidence of carcinogenicity for most types of CNTs and CNFs at this time, and possible carcinogenicity of one type of CNT (MWCNT-7). The key evidence gaps to be filled by research include: investigation of possible associations between in vitro and early-stage in vivo events that may be predictive of lung cancer or mesothelioma, and systematic analysis of dose-response relationships across materials, including evaluation of the influence of physico-chemical properties and experimental factors on the observation of nonmalignant and malignant endpoints.


Asunto(s)
Pruebas de Carcinogenicidad , Nanofibras/toxicidad , Nanotubos de Carbono/toxicidad , Animales , Humanos
8.
Am J Pathol ; 186(11): 2887-2908, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27643531

RESUMEN

Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.


Asunto(s)
Diacetil/efectos adversos , Aromatizantes/efectos adversos , Enfermedades Pulmonares/etiología , Proteína Sequestosoma-1/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Ubiquitina/metabolismo , Animales , Autofagia , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Exposición por Inhalación , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Proteína Marcadora Olfativa/genética , Proteína Marcadora Olfativa/metabolismo , Sistema Respiratorio/metabolismo , Sistema Respiratorio/patología , Proteína Sequestosoma-1/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
9.
J Appl Toxicol ; 36(1): 161-74, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25926378

RESUMEN

Inhalation exposure to multi-walled carbon nanotubes (MWCNT) in mice results in inflammation, fibrosis and the promotion of lung adenocarcinoma; however, the molecular basis behind these pathologies is unknown. This study determined global mRNA and miRNA profiles in whole blood from mice exposed by inhalation to MWCNT that correlated with the presence of lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma. Six-week-old, male, B6C3F1 mice received a single intraperitoneal injection of either the DNA-damaging agent methylcholanthrene (MCA, 10 µg g(-1) body weight) or vehicle (corn oil). One week after injections, mice were exposed by inhalation to MWCNT (5 mg m(-3), 5 hours per day, 5 days per week) or filtered air (control) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for the development of pathological changes in the lung, and whole blood was collected and analyzed using microarray analysis for global mRNA and miRNA expression. Numerous mRNAs and miRNAs in the blood were significantly up- or down-regulated in animals developing pathological changes in the lung after MCA/corn oil administration followed by MWCNT/air inhalation, including fcrl5 and miR-122-5p in the presence of hyperplasia, mthfd2 and miR-206-3p in the presence of fibrosis, fam178a and miR-130a-3p in the presence of bronchiolo-alveolar adenoma, and il7r and miR-210-3p in the presence of bronchiolo-alveolar adenocarcinoma, among others. The changes in miRNA and mRNA expression, and their respective regulatory networks, identified in this study may potentially serve as blood biomarkers for MWCNT-induced lung pathological changes.


Asunto(s)
Adenocarcinoma/genética , Adenoma/genética , Neoplasias Pulmonares/genética , Pulmón/patología , MicroARNs/sangre , Nanotubos de Carbono/toxicidad , Fibrosis Pulmonar/genética , ARN Mensajero/sangre , Adenocarcinoma/etiología , Adenocarcinoma del Pulmón , Animales , Redes Reguladoras de Genes , Hiperplasia , Exposición por Inhalación , Neoplasias Pulmonares/etiología , Masculino , Ratones
10.
J Mater Chem B ; 3: 3983-3992, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26146559

RESUMEN

The toxicity of engineered nanomaterials in biological systems depends on both the nanomaterial properties and the exposure duration. Herein we used a multi-tier strategy to investigate the relationship between user-characterized multi-walled carbon nanotubes (MWCNTs) exposure duration and their induced biochemical and biomechanical effects on model human lung epithelial cells (BEAS-2B). Our results showed that exposure to MWCNTs leads to time-dependent intracellular uptake and generation of reactive oxygen species (ROS), along with time-dependent gradual changes in cellular biomechanical properties. In particular, the amount of internalized MWCNTs followed a sigmoidal curve with the majority of the MWCNTs being internalized within 6h of exposure; further, the sigmoidal uptake correlated with the changes in the oxidative levels and cellular biomechanical properties respectively. Our study provides new insights into the time-dependent induced toxicity caused by exposure to occupationally relevant doses of MWCNTs and could potentially help establish bases for early risk assessments of other nanomaterials toxicological profiles.

11.
Environ Sci Nano ; 1(6): 95-603, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25485116

RESUMEN

Toxicity of engineered nanomaterials is associated with their inherent properties, both physical and chemical. Recent studies have shown that exposure to multi-walled carbon nanotubes (MWCNTs) promotes tumors and tumor-associated pathologies and lead to carcinogenesis in model in vivo systems. Here in we examined the potential of purified MWCNTs used at occupationally relevant exposure doses for particles not otherwise regulated to affect human lung epithelial cells. The uptake of the purified MWCNTs was evaluated using fluorescence activated cell sorting (FACS), while the effects on cell fate were assessed using 2- (4-iodophenyl) - 3- (4-nitrophenyl) - 5-(2, 4-disulfophenyl) -2H-tetrazolium salt colorimetric assay, cell cycle and nanoindentation. Our results showed that exposure to MWCNTs reduced cell metabolic activity and induced cell cycle arrest. Our analysis further emphasized that MWCNTs-induced cellular fate results from multiple types of interactions that could be analyzed by means of intracellular biomechanical changes and are pivotal in understanding the underlying MWCNTs-induced cell transformation.

12.
Part Fibre Toxicol ; 11: 6, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24479647

RESUMEN

Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 µg/cm² MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 µm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels.


Asunto(s)
Mutágenos , Nanotubos de Carbono/toxicidad , Exposición Profesional , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Cromosomas/efectos de los fármacos , Daño del ADN , Monitoreo del Ambiente , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Citometría de Flujo , Humanos , Hibridación Fluorescente in Situ , Microscopía de Fuerza Atómica , Mitosis/efectos de los fármacos , Espectrometría por Rayos X , Espectrometría Raman , Huso Acromático/efectos de los fármacos , Células Madre
13.
Part Fibre Toxicol ; 11: 3, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24405760

RESUMEN

BACKGROUND: Engineered carbon nanotubes are currently used in many consumer and industrial products such as paints, sunscreens, cosmetics, toiletries, electronic processes and industrial lubricants. Carbon nanotubes are among the more widely used nanoparticles and come in two major commercial forms, single-walled carbon nanotubes (SWCNT) and the more rigid, multi-walled carbon nanotubes (MWCNT). The low density and small size of these particles makes respiratory exposures likely. Many of the potential health hazards have not been investigated, including their potential for carcinogenicity. We, therefore, utilized a two stage initiation/promotion protocol to determine whether inhaled MWCNT act as a complete carcinogen and/or promote the growth of cells with existing DNA damage. Six week old, male, B6C3F1 mice received a single intraperitoneal (ip) injection of either the initiator methylcholanthrene(MCA, 10 µg/g BW, i.p.), or vehicle (corn oil). One week after i.p. injections, mice were exposed by inhalation to MWCNT (5 mg/m³, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for lung tumor formation. RESULTS: Twenty-three percent of the filtered air controls, 26.5% of the MWCNT-exposed, and 51.9% of the MCA-exposed mice, had lung bronchiolo-alveolar adenomas and lung adenocarcinomas. The average number of tumors per mouse was 0.25, 0.81 and 0.38 respectively. By contrast, 90.5% of the mice which received MCA followed by MWCNT had bronchiolo-alveolar adenomas and adenocarcinomas with an average of 2.9 tumors per mouse 17 months after exposure. Indeed, 62% of the mice exposed to MCA followed by MWCNT had bronchiolo-alveolar adenocarcinomas compared to 13% of the mice that received filtered air, 22% of the MCA-exposed, or 14% of the MWCNT-exposed. Mice with early morbidity resulting in euthanasia had the highest rate of metastatic disease. Three mice exposed to both MCA and MWCNT that were euthanized early had lung adenocarcinoma with evidence of metastasis (5.5%). Five mice (9%) exposed to MCA and MWCNT and 1 (1.6%) exposed to MCA developed serosal tumors morphologically consistent with sarcomatous mesotheliomas, whereas mice administered MWCNT or air alone did not develop similar neoplasms. CONCLUSIONS: These data demonstrate that some MWCNT exposures promote the growth and neoplastic progression of initiated lung cells in B6C3F1 mice. In this study, the mouse MWCNT lung burden of 31.2 µg/mouse approximates feasible human occupational exposures. Therefore, the results of this study indicate that caution should be used to limit human exposures to MWCNT.


Asunto(s)
Adenocarcinoma/inducido químicamente , Neoplasias Pulmonares/inducido químicamente , Nanotubos de Carbono/toxicidad , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adenoma/inducido químicamente , Adenoma/patología , Animales , Líquido del Lavado Bronquioalveolar/citología , Técnica del Anticuerpo Fluorescente , Hiperplasia/inducido químicamente , Hiperplasia/patología , Exposición por Inhalación , Pulmón/patología , Neoplasias Pulmonares/patología , Mesotelioma/inducido químicamente , Mesotelioma/patología , Ratones , Ratones Endogámicos , Microscopía de Polarización , Infiltración Neutrófila/efectos de los fármacos , Análisis de Supervivencia
14.
Toxicol Pathol ; 41(2): 395-409, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23389777

RESUMEN

Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.


Asunto(s)
Nanotecnología , Patología , Toxicología , Animales , Humanos
16.
Toxicol Appl Pharmacol ; 258(1): 51-60, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22037315

RESUMEN

Mechanisms of digitoxin-inhibited cell growth and induced apoptosis in human non-small cell lung cancer (NCI-H460) cells remain unclear. Understanding how digitoxin or derivate analogs induce their cytotoxic effect below therapeutically relevant concentrations will help in designing and developing novel, safer and more effective anti-cancer drugs. In this study, NCI-H460 cells were treated with digitoxin and a synthetic analog D6-MA to determine their anti-cancer activity. Different concentrations of digitoxin and D6-MA were used and the subsequent changes in cell morphology, viability, cell cycle, and protein expressions were determined. Digitoxin and D6-MA induced dose-dependent apoptotic morphologic changes in NCI-H460 cells via caspase-9 cleavage, with D6-MA possessing 5-fold greater potency than digitoxin. In comparison, non-tumorigenic immortalized bronchial and small airway epithelial cells displayed significantly less apoptotic sensitivity compared to NCI-H460 cells suggesting that both digitoxin and D6-MA were selective for NSCLC. Furthermore, NCI-H460 cells arrested in G(2)/M phase following digitoxin and D6-MA treatment. Post-treatment evaluation of key G2/M checkpoint regulatory proteins identified down-regulation of cyclin B1/cdc2 complex and survivin. Additionally, Chk1/2 and p53 related proteins experienced down-regulation suggesting a p53-independent cell cycle arrest mechanism. In summary, digitoxin and D6-MA exert anti-cancer effects on NCI-H460 cells through apoptosis or cell cycle arrest, with D6-MA showing at least 5-fold greater potency relative to digitoxin.


Asunto(s)
Antineoplásicos/farmacología , Digitoxina/análogos & derivados , Digitoxina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Ramnosa/análogos & derivados , Caspasa 9/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Ciclina B1/análisis , Citocromos c/análisis , Humanos , Neoplasias Pulmonares/patología , Proteínas Quinasas/análisis , Ramnosa/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores
17.
Toxicol Pathol ; 39(2): 301-24, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21422259

RESUMEN

Advances in chemistry and engineering have created a new technology, nanotechnology, involving the tiniest known manufactured products. These products have a rapidly increasing market share and appear poised to revolutionize engineering, cosmetics, and medicine. Unfortunately, nanotoxicology, the study of nanoparticulate health effects, lags behind advances in nanotechnology. Over the past decade, existing literature on ultrafine particles and respirable durable fibers has been supplemented by studies of first-generation nanotechnology products. These studies suggest that nanosizing increases the toxicity of many particulates. First, as size decreases, surface area increases, thereby speeding up dissolution of soluble particulates and exposing more of the reactive surface of durable but reactive particulates. Second, nanosizing facilitates movement of particulates across cellular and intracellular barriers. Third, nanosizing allows particulates to interact with, and sometimes even hybridize with, subcellular structures, including in some cases microtubules and DNA. Finally, nanosizing of some particulates, increases pathologic and physiologic responses, including inflammation, fibrosis, allergic responses, genotoxicity, and carcinogenicity, and may alter cardiovascular and lymphatic function. Knowing how the size and physiochemical properties of nanoparticulates affect bioactivity is important in assuring that the exciting new products of nanotechnology are used safely. This review provides an introduction to the pathology and toxicology of nanoparticulates.


Asunto(s)
Fibrosis/inducido químicamente , Inflamación/inducido químicamente , Nanopartículas/toxicidad , Nanotecnología/métodos , Animales , Carcinógenos/toxicidad , Cosméticos/toxicidad , Polvo , Exposición a Riesgos Ambientales , Humanos , Hipersensibilidad/inmunología , Mutágenos/toxicidad , Tamaño de la Partícula
18.
Nanotoxicology ; 4: 396-408, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20925447

RESUMEN

The development of novel engineered nano-sized materials is a rapidly emerging technology with many applications in medicine and industry. In vitro and in vivo studies have suggested many deleterious effects of carbon nanotube exposure including granulomatous inflammation, release of cytosolic enzymes, pulmonary fibrosis, reactive oxygen damage, cellular atypia, DNA fragmentation, mutation and errors in chromosome number as well as mitotic spindle disruption. The physical properties of the carbon nanotubes make respiratory exposure to workers likely during the production or use of commercial products. Many of the investigations of the genotoxicity of carbon nanotubes have focused on reactive oxygen mediated DNA damage; however, the long thin tubular-shaped carbon nanotubes have a striking similarity to cellular microtubules. The similarity of carbon nanotubes to microtubules suggests a potential to interact with cellular biomolecules, such as the mitotic spindle, as well as the motor proteins that separate the chromosomes during cell division. Disruption of centrosomes and mitotic spindles would result in monopolar, tripolar, and quadrapolar divisions of chromosomes. The resulting aneuploidy is a key mechanism in the potential carcinogenicity of carbon nanotubes.


Asunto(s)
Nanotubos de Carbono/toxicidad , Animales , Línea Celular Tumoral , Humanos , Pruebas de Mutagenicidad/métodos , Nanotubos de Carbono/química , Tamaño de la Partícula
19.
J Toxicol Environ Health A ; 72(23): 1509-19, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20077225

RESUMEN

Crystalline silica (silica), a suspected human carcinogen, produces an increase in reactive oxygen species (ROS) when fractured using mechanical tools used in several occupations. Although ROS has been linked to apoptosis, DNA damage, and carcinogenesis, the role of enhanced ROS production by silica in silica-induced carcinogenesis is not completely understood. The goal of this study was to compare freshly fractured and aged silica-induced molecular alterations in human immortalized/transformed bronchial epithelial cells (BEAS-IIB) and lung cancer cells with altered (H460) or deficient (H1299) p53 expression. Exposure to freshly fractured or aged silica produced divergent cellular responses in certain downstream cellular events, including ROS production, apoptosis, cell cycle and chromosomal changes, and gene expression. ROS production increased significantly following exposure to freshly fractured silica compared to aged silica in BEAS-IIB and H460 cells. Apoptosis showed a comparable enhanced level of induction with freshly fractured or aged silica in both cancer lines with p53 functional changes. p53 protein was present in the BEAS-IIB and was absent in cancer cell lines after silica exposure. Exposure to freshly fractured silica also resulted in a rise in aneuploidy in cancer cells with a significantly greater increase in p53-deficient cells. Cytogenetic analysis demonstrated increased metaphase spreads, chromosome breakage, rearrangements, and endoreduplication in both cancer cells. These results suggest that altered and deficient p53 affects the cellular response to freshly fractured silica exposure, and thereby enhances susceptibility and augments cell proliferation and lung cancer development.


Asunto(s)
Dióxido de Silicio/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Pruebas de Carcinogenicidad , Línea Celular , Análisis Citogenético , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética
20.
Toxicol Appl Pharmacol ; 233(1): 81-91, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18367224

RESUMEN

The incidence of adenocarcinoma of the lung is increasing in the United States, however, the difficulties in obtaining lung cancer families and representative samples of early to late stages of the disease have lead to the study of mouse models for lung cancer. We used Spectral Karyotyping (SKY), mapping with fluorescently labeled genomic clones (FISH), comparative genomic hybridization (CGH) arrays, gene expression arrays, Western immunoblot and real time polymerase chain reaction (PCR) to analyze nine pairs of high-invasive and low-invasive tumor cell strains derived from early passage mouse lung adenocarcinoma cells to detect molecular changes associated with tumor invasion. The duplication of chromosomes 1 and 15 and deletion of chromosome 8 were significantly associated with a high-invasive phenotype. The duplication of chromosome 1 at band C4 and E1/2-H1 were the most significant chromosomal changes in the high-invasive cell strains. Mapping with FISH and CGH array further narrowed the minimum region of duplication of chromosome 1 to 71-82 centimorgans (cM). Expression array analysis and confirmation by real time PCR demonstrated increased expression of COX-2, Translin (TB-RBP), DYRK3, NUCKS and Tubulin-alpha4 genes in the high-invasive cell strains. Elevated expression and copy number of these genes, which are involved in inflammation, cell movement, proliferation, inhibition of apoptosis and telomere elongation, were associated with an invasive phenotype. Similar linkage groups are altered in invasive human lung adenocarcinoma, implying that the mouse is a valid genetic model for the study of the progression of human lung adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Aberraciones Cromosómicas , Neoplasias Pulmonares/genética , Adenocarcinoma/patología , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/fisiología , Cariotipificación/métodos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Invasividad Neoplásica , Especificidad de la Especie , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...